Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37893993

RESUMO

Over time, indigenous cattle breeds have developed disease resistance, heat tolerance, and adaptability to harsh environments. Deciphering the genetic mechanisms underlying adaptive traits is crucial for their improvement and sustainable utilization. For the first time, we performed whole-genome sequencing to unveil the genomic diversity, population structure, and selection signatures of Abigar cattle living in a tropical environment. The population structure analysis revealed that Abigar cattle exhibit high nucleotide diversity and heterozygosity, with low runs of homozygosity and linkage disequilibrium, suggesting a genetic landscape less constrained by inbreeding and enriched by diversity. Using nucleotide diversity (Pi) and population differentiation (FST) selection scan methods, we identified 83 shared genes that are likely associated with tropical adaption. The functional annotation analysis revealed that some of these genes are potentially linked to heat tolerance (HOXC13, DNAJC18, and RXFP2), immune response (IRAK3, MZB1, and STING1), and oxidative stress response (SLC23A1). Given the wider spreading impacts of climate change on cattle production, understanding the genetic mechanisms of adaptation of local breeds becomes crucial to better respond to climate and environmental changes. In this context, our finding establishes a foundation for further research into the mechanisms underpinning cattle adaptation to tropical environments.

2.
Arch Microbiol ; 204(7): 403, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35723754

RESUMO

Understanding plant microbes' intimate relationship and search for beneficial microbes is a sustainable alternative to improve plant growth and yield under a wide range of biotic and abiotic stress conditions. More than 20% of the total global agricultural land is affected by salinity. High salinity challenges crop plants by affecting several metabolic pathways and decreasing plant growth and yield. Unlike chemical fertilizers and pesticides, endophytic microbes offer an eco-friendly approach to increasing crop yield via various metabolites during salinity stress. The objective of this study was to isolate and characterize endophytic halotolerant bacterial isolates from haloalkaliphytes, investigate their plant growth-promoting (PGP) properties and tolerance for various stress conditions. Sporobolus specatus (Vahr) Kunth and Cyperus laevigatus L. grass samples were collected from the shores of two Ethiopian soda lakes (Lakes Abijata, and Chitu, respectively). A total of 167 halotolerant endophytic bacterial isolates, that clustered into 21 ARDRA (Amplified ribosomal DNA restriction analysis) groups, affiliated to members of 11 bacterial genera, namely Halomonas, Agrobacterium, Exiguobacterium, Jonesia, Stenotrophomonas, Pseudomonas, Alishewanella, Kosakonia, Bacillus, Paracoccus and Pannonibacter, were identified based on 16S rRNA sequencing. Most of the strains were able to produce IAA (indole-3-acetic acid) and hydrogen cyanide, grow on a nitrogen-free medium and solubilize phosphate. In vitro tolerance tests reveal that isolates were tolerant to: 5.0-15% NaCl, up to 40% PEG 6000, temperatures up to 50 °C, and pH 5-11. These characteristics of the isolates indicate their potential PGP application under various plant stress conditions.


Assuntos
Cyperus , Lagos , Bactérias , Cyperus/genética , Endófitos , Etiópia , Raízes de Plantas/microbiologia , Plantas , Poaceae , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...